In some embodiments, an electrochemical generation system includes an electrochemical chamber with an ion-transfer membrane dividing the electrochemical chamber. The electrochemical chamber includes a first electrochemical fluid and a second electrochemical fluid separated by the ion-transfer membrane. In some embodiments, ion-transfer across the ion-transfer membrane between the first electrochemical fluid and the second electrochemical fluid produces an electric voltage and current to the processor or other electrical load and discharges the first electrochemical fluid. In some embodiments, an applied voltage from an electrical source (in place of the electrical load) results in a reverse transfer of ions across the ion-transfer membrane which charges the first electrochemical fluid.
In some embodiments, the electrochemical chamber is in fluid communication with a first storage tank and a second storage tank. For example, the first electrochemical fluid is stored in the first storage tank and can flow into the electrochemical chamber, and the second electrochemical fluid is stored in the second storage tank and can flow into the electrochemical chamber. A first pump and second pump may control the flow of the first electrochemical fluid and the flow of the second electrochemical fluid, respectively to the electrochemical chamber. In some embodiments, the rate of ion-transfer across the ion-transfer membrane is at least partially related to a flow rate of the first electrochemical fluid and the second electrochemical fluid into the electrochemical chamber (and in contact with the ion-transfer membrane).