In some embodiments, the electrochemical fluid circulates through the electrochemical generator system, receiving electrical power from the electrical source and delivering the electrical power to the electrical load, substantially continuously. In some embodiments, the electrochemical fluid is stored in a storage tank until the electrical power is needed similarly to a battery, when pumps flow the electrochemical fluid. As described herein, a first electrochemical fluid and a second electrochemical fluid exchange ions across a first ion-transfer membrane in the first electrochemical chamber to discharge the first electrochemical fluid and produce electrical power. The first electrochemical fluid and a second electrochemical fluid exchange ions across a second ion-transfer membrane in the second electrochemical chamber to charge the first electrochemical fluid and store electrical power.
In some embodiments, at least a part of the electrochemical chamber configured to provide power is located in a microfluidic volume between dies on a stacked-die processor. For example, a first electrochemical fluid may be positioned in the microfluidic volume. In another example, a second electrochemical fluid may be positioned in the microfluidic volume. In yet another example, both the first electrochemical fluid and the second electrochemical fluid may be positioned in the microfluidic volume.