In some embodiments, a heat-generating component according to the present disclosure includes a die. The die may be a generalized device, such as a central processing unit (CPU) or graphical processing unit (GPU), a specialized device application-specific integrating circuit (ASIC), a memory module (such as cache memory, volatile memory, or non-volatile memory), or other electronic or processing components. The die generates heat during use.
In a conventional processor, the die is connected to a printed circuit board (PCB), which delivers electrical power to the die via one or more wire traces. The delivery of electrical power through the wire traces can be inefficient from an electrical standpoint and/or a design space standpoint. Further, conventionally, heat generated by the processor is transmitted by a thermal interface material (TIM) to a heat spreader that is in contact with a heat sink or other interface to exhaust the heat to a liquid coolant or to the ambient atmosphere. In some instances, the thermal management components and interfaces can limit the amount of heat exhausted. In the case of stacked-die processors, conventional thermal management may be incapable of cooling all dies in the processor.